

Bassi/Power5 Architecture

John Shalf
NERSC Users Group Meeting
Princeton Plasma Physics Laboratory
June 2005

POWER5 IH Overview

POWER5 IH System

□ 2U rack chassis

•Rack: 24" X 43 " Deep, Full Drawer

	POWER5 IH Node	
Architecture	4W or 8W POWER5 Processors	
L3 Cache	144MB / 288MB (total)	
Memory	2GB - 128/256GB	
Packaging	2U (24" rack) 16 Nodes / Rack	
DASD / Bays	2 DASD (Hot Plug)	
I/O Expansion	6 slots (Blindswap)	
Integrated SCSI	Ultra 320	
Integrated Ethernet	4 Ports 10/100/1000	
RIO Drawers	Yes (1/2 or 1)	
LPAR	Yes	
Switch	HPS	
OS	AIX 5.2 & Linux	

POWER5 IH Physical Structure

IBM Power Series Processors

		Λ
5	יייייי	[111]
	BERKELEY LAI	

	Power3+	Power4	Power5
MHz	375	1300	1900
FLOPS/clock	4	4	4
Peak FLOPS	1.5	5.2	7.6
L1 (D-Cache)	64k	32k	32k
L2 (unified)	8MB	1.5M (0.75M)	1.9M
L3 (unified)		32M (16M)	36M
STREAM GB/s	0.4 (0.7)	1.4 (2.4)	5.4 (7.6)
Bytes/FLOP	0.3	0.44	0.7

Power3 vs. Power5 die

Power3

Power5

Power3 vs. Power5 die

Power3

Power5

Power3 vs. Power5 die

Power3

Power5

Memory Subsystem

SMP Fabric

SMP Fabric

Remaining core gets

- •All of L2 + L3 cache
- All memory BW
- Increased Clock Rate

System Packaging (MCM vs. DCM)

- Multi-Chip Module (MCM)
- 4 x Power5 + L3 Caches
- Up to 8 Power5 cores
- L2 shared among cores

- Dual-Chip Module (DCM)
- 1 x Power5 + L3 Cache
- Up to 2 Power5 cores
- Private L2 and L3

System Packaging (MCM vs. DCM)

Power5 Cache Hierarchy

P5 Squadron

- 4 MCM
- 64 proc SMP

P5 Squadron IH

- 4 DCM
- 8 proc@1.9GHz
- •16 proc@1.5GHz

Image From IBM Power5 Redbook

Power5-IH Node Architecture

Notes: 1) SMP Buses run at 1.0 Ghz

2) L3 Buses run at 1.0 Ghz

3) Memory Buses run at 1.066 Ghz

Address/Control Buses in Green

Image From IBM

Power5 IH Memory Affinity

ERSC

Power5 IH Memory Affinity

Proc0 to Mem0 == 90ns

Power5 IH Memory Affinity

Proc0 to Mem0 == 90ns

Proc0 to Mem7 == 200+ns

Page Mapping

Office of Science			
Proc0 Page#	Mem# RR		
0	0		
1	1		
2	2		
3	3		
5	4		
6	5		
7	6		
8	7		
9	0		
10	1		
11	2		
12	3		
13	4		
14	5		
15	6		
16	7		

Linear Walk through Memory Addresses

- Default Affinity is round_robin (RR)
- Pages assigned round-robin to mem ctrlrs.
- Average latency ~170-190ns

ERSC

Page Mapping

Office of Science	ce	
Proc0 Page#	Mem# <i>RR</i>	Mem# <i>MCM</i>
0	0	0
1	1	0
2	2	0
3	3	0
5	4	0
6	5	0
7	6	0
8	7	0
9	0	0
10	1	0
11	2	0
12	3	0
13	4	0
14	5	0
15	6	0
16	7	0

Linear Walk through Memory Addresses

ERSC

- MCM affinity (really DCM affinity in this case)
- Pages assigned to mem ctrlr where first touched.
- Average latency 90ns + no fabric contention

Memory Affinity Directives

- For processor-local memory affinity, you should also set environment variables to
 - MP_TASK_AFFINITY=MCM
 - MEMORY_AFFINITY=MCM
- For OpenMP need to eliminate memory affinity
 - Unset MP_TASK_AFFINITY
 - MEMORY_AFFINITY=round_robin (depending on OMP memory usage pattern)

Large Pages

- Enable Large Pages
 - -blpdata (at link time)
 - Or Idedit -blpdata <exename> on existing executable
- Effect on STREAM performance
 - TRIAD without -blpdata: 5.3GB/s per task
 - TRIAD with -blpdata: 7.2 GB/s per task (6.9 loaded)

A Short Commentary about Latency

- Little's Law: bandwidth * latency = concurrency
- For Power-X (some arbitrary) single-core:
 - 150ns * 20 Gigabytes/sec (DDR2 memory)
 - 3000 bytes of data in flight
 - 23.4 cache lines (very close to 24 memory request queue depth)
 - 375 operands must be prefetched to fully engage the memory subsystem
 - THAT'S a LOT of PREFETCH!!! (esp. with 32 architected registers!)

Deep Memory Request Pipelining Using Stream Prefetch

Stanza Triad Results

- Perfect prefetching:
 - performance is independent of L, the stanza length
 - expect flat line at STREAM peak
 - our results show performance depends on L

XLF Prefetch Directives

- DCBT (Data Cache Block Touch) explicit prefetch
 - Pre-request some data
 - !IBM PREFETCH_BY_LOAD(arrayA(I))
 - !IBM PREFETCH_FOR_LOAD(variable list)
 - !IBM PREFETCH_FOR_STORE(variable list)
- Stream Prefetch
 - Install stream on a hardware prefetch engine
 - Syntax: !IBM PREFETCH_BY_STREAM(arrayA(I))
 - PREFETCH_BY_STREAM_BACKWARD(variable list)
- DCBZ (Data Cache Block Zero)
 - Use for store streams
 - Syntax: !IBM CACHE_ZERO(StoreArrayA(I))
 - Automatically include using -qnopteovrlp option (unreliable)
 - Improve performance by another 10%

Power5: Protected Streams

- Protected Prefetch Streams
 - There are 12 filters and 8 prefetch engines
 - Need control of stream priority and prevent rolling of the filter list (takes a while to ramp up prefetch)
 - Helps give hardware hints about "stanza" streams
 - PROTECTED_UNLIMITED_STREAM_SET_GO_FORWARD(variable, streamID)
 - PROTECTED_UNLIMITED_STREAM_SET_GO_BACKWARD(var, streamID)
 - PROTECTED STREAM SET GO FORWARD/BACKWARD(var,streamID)
 - PROTECTED STREAM COUNT(ncachelines)
 - PROTECTED_STREAM_GO
 - PROTECTED_STREAM_STOP(stream_ID)
 - PROTECTED STREAM STOP ALL
- STREAM_UNROLL
 - Use more aggressive loop unrolling and SW pipelining in conjunction with prefetch
- EIEIO (Enforce Inorder Execution of IO)

